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para produzir respostas exatas onde estas fossem conhecidas.

Os resultados dag simulacio mostraram-se bastante satisfatérios, apresentando

mento simples sobre og mesmos controladores LQ. Considera-se que a abordagem
€ promissora, e possa vir a ser utilizada em outros sistemas com caracterfsticas

semelhantes,
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Abstract

The goal of this work is the application of fuzzy logic and neural networks tech-
niques in the control of pullutant gases generated by internal combustion engines
powered by natural gas.

The technique used consists in covering the operation region of the engine
with a series of LQ controllers, and use fuzzy logic to interpolate these controllers,
thus creating a controller that presents a good performance all over the operation
region. Upon this system, it was used an backpropagation algorithm to fine tune
the controller, so as to produce exact responses where they where known.

The simulation results have been quite satisfactory, showing a performance
consistently superior to that of controller using a simple switching schema over
the same LQ controllers. [t was considered that this was good approach, and it

may be used in other systems with similar characteristics.
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Capitulo 1

Introducao

Uma abordagem que recebeu bastante atencdo nas ultimas duas décadas é a
chamada “soft computing”, ou “knowledge based engineering”. Esta abordagem,
que agrupa uma série de tecnologias (redes neurais artificiais, logica fuzzy, al-
goritmos genéticos etc) se caracteriza pelo uso de mecanismos de processamento
de informagao e de dados inspirados nos mecanismos utilizados por sistemas bi-
olégicos. Desse modo, as redes neurais foram inspiradas na funcionamento do
sistema nervoso central, a légica fuzzy surgiu como um modo de descrever modos
de raciocinio utilizando conceitos pouco definidos, e algoritmos genéticos surgiram
como um modelo do funcionamento da teoria da, evolucio.

O objetivo deste trabalho é testar esta abordagem na realizacio do controle de
um problema préatico, e comparar os resultados com os obtidos utilizando outras
técnicas de controle. Neste aspecto, a tese de Freitas Junior (2003) é um 6timo
ponto de partida, pois compara o desempenbo de vérias técnicas distintas para
o controle de um motor a combustio interna movido a gas natural. Portanto
decidiu-se utilizar como plataforma de teste o modelo de motor citado nesta tese,
€ proposto originalmente por Lopes & Fleury (1995).

O modelo do MCI ¢ bastante interessante pois trata-se de um sistemna nio-
linear e de dinamica complexa, e com objetivos de controle bastante restritivos.
Além disso, existe um interesse social muito grande quanto a melhora das tec-
nologias relacionadas a MCIs a gas natural, pois estes vem se mostrando uma

alternativa economicamente e ecologicamente viavel aos MCls movidos 3 gasolina



ou diesel.

Apesar de ainda ser baseado em uma fonte de energia nio renovavel, o preco
do gés natural é bastante inferior ao de outros combustiveis f6sseis. Também a
queima. deste combustivel é mais eficiente, e, para uma mesma massa, ele possuf
mais energia se comparado 2 gasolina, por exemplo. Do ponto de vista da emjs-
sdo de poluentes, vé-se que a queima do gas natural produz uma quantidade de
particulados muito menor que o éleo diesel, por exemplo, e também nio produz

derivados de enxofre, como a gasolina.

L a00% . L.
1 CO
: HC
: NO,
| 5%
! HC o
698 1,0 L0z 10 12 i4 16
Relacdo A Relacao A
(a) Eficiéncia (b} EmissSes

Figura 1.1: Graficos de eficiéncia do catalizador e emissées do MCI

No entanto, ainda resta o problema da produgio de éxidos de nitrogénio
(NQ,), hidrocarbonetos (HCs) e menéxido de carbono (CO). Uma solugio pos-
sivel para estes problemas é o uso de catalizadores. O grande problema desta
abordagem & que a faixa de eficiéncia para os catalizadores é muito restrita, so-
bretudo para a redugso do NV O;. Vé-se na figura 1.1 que para se manter uma
eficiéncia de funcionamento do catalizador em torno de 50%, a variacio da re-
lagio estequiométrica ndo deve ser maior que 1% da relagso ideal. Esta faixa,
é relativamente simples de ser mantida para um MCI trabalhando em regime,

porém, para um MCI sujeito a muitos transitérios, a operacio se d4 basicamente
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fora desta faixa ideal. Deste modo se Justifica o esforco de desenvolvimento de
um sistema de controle que mantenha a relagdo estequiométrica da saida em um
nivel satisfatério.

Este texto est4 organizado do seguinte modo: No préximo capitulo sersa dada
uma introdugéo a algumas técnicas de controle linear e nio-linear. No capitulo
4 serd dada uma introducio sobre légica fuzzy. No capitulo 5 serdo descritas as
principais caracterfsticas da rede neural que seré utilizada no projeto. No capitulo
2, serd mostrado o modelo do motor, que é o sistema a ser controlado. No capitulo
6 serd dada uma defini¢do mais rigorosa do problema. de controle, e ser4 mostrado
0 processo de sintese da arquitetura do controlador e da definigdo dos parametros
do mesmo. Finalmente, no capitulo 7 serso mostrados os resultados comparativos
destes controladores. Finalmente, em 8 estdo as principais conclusdes obtidas

deste estudo.



Capitulo 2

Modelo do motor

Este trabalho serd realizado sobre um modelo de motor de combustio interna,
desenvolvido por Lopes & Fleury (1995). O modelo representa um motor diesel
de 6 cilindros, convertido para gis natural, e com injegéo eletrénica monoponto.
O carregamento do motor é realizado através de uma que aumenta linearmente
com a rotacao.

Este modelo enfoca sobretudo as caracteristicas dinamicas do motor em si,
néo tendo sido modeladas as perdas de carga no filtro de ar e no escapamento, e
também nao tendo sido modeladas as dinamicas dos atuadores nem dos sensores.
Portanto, no projeto do sistema de controle, considerar-se-4 uma velocidade de
atuagao infinitamente rapidal.

O modelo em si néo sers mostrado aqui, por ser muito extenso, e estar disponi-
vel em outras fontes ((Lopes & Fleury 1995) e (Freitas Junior 2003)). As varidveis
de entrada deste modelo s&o o avango do &ngulo de ignigio (), a vazio massica
de combustivel na borboleta(ve,) e o angulo de abertura da borboleta (a). As
varidveis medidas sdo a razdo estequiométrica na borboleta e na safda do motor
(respectivamente ¢, € ¢.). Este modelo foi implementado como um diagrama de
blocos utilizando o Simulink?™.

Uma das desvantagens de se possuir um modelo implementado apenas em
digrama. de blocos, ou seja, nao analitico, & que fica-se privado de uma série de

ferramentas para a analise do comportamento do sistema. Para resolver este

1Pode-se dizer que isto de certa forma corresponde 4 realidade, ja que o tempo de resposta
de um bico injetor & muito mais rapido que as outras dinimicas envolvidas



problema, Freitas Junior (2003) empreendeu a transformacio deste modelo em
um modelo analitico no espago de estados. E este o modelo que sera utilizado no
presente trabalho. Como algumas funcées do modelo original eram descontinuas,
para tornar o modelo analitico estas fungbes foram interpoladas. No entanto isto
resultou em pouca diferenca nos resultados das simulagGes.

Este modelo analitico & composto por 6 variaveis de estado, sendo que 4 delas
modelam os varios atrasos de transporte presentes, uma é a velocidade de ro-
tacio do motor e a outra é a pressdo no coletor de admissdo. As equagdes estdo

representadas abaixo.

1 = =300z, —20000x; + ve (2.1)

:12'2 = I (22)
. 2530192 - 10%x

Xz = —100.‘1','3 + 27np Ta (23)

£y = —200z4+ 100z (2.4)
3 . 1,35

p = 4,364-10"vay(a,p) — ——np (2.5)
. 1 /8.101

Ro= oo ( = 2 E¢(z1, %2, 73,p,m,8) — 2,22n + 66,3) (2.6)

As saidas sdo dadas pelas equagbes

v
bp = 14’5«;7: (2.7)

1265093 - 1087
27np

¢, = 400z4 — dnz3 + ( —xzy + 200:1:2) (2.8)

Definindo
A(a) = 3 — 2 cos(a) — cos’(a) (2.9)

E va, € dado por
0,0000101593757 A(a)p®™ (1 — &)>'" Se p > 5,28 - 10 (210)
vay = )
0,0291809218757 A(a) Se p < 5,28 - 10*
A tabela 2.1 explica os simbolos utilizados nestas equagdes.
Este modelo foi linearizado por Fernando Freitas Jr. ao redor de varios pontos

de operacgio. O critério utilizado foi considerar o dngulo de abertura da borboleta



SIMBOLO | SIGNIFICADO FISICO

o Angulo de abertura da valvula borboleta

D Diametro da tubulacio na valvula borboleta
Aa) Area da secio ma valvula borboleta

B Angulo de avanco da ignigio (antes do ponto morto superior)
ve Vazao de combustivel na valvula borboleta

vay Vazao de ar na valvula borboleta

Ve, Vazao de combustivel na valvula de admissao
va, Vazédo de ar na valvula de admissao

b Relacio combustivel/ar na valvula borboleta

Oq Relacio combustivel/ar na vilvula de admissao
Pe Relacdo combustivel/ar na camara de combustao
Pe Relagdo combustivel/ar no escape

n Rotacao do motor

p Pressao no coletor

como uma pertubacio do ambiente, e encontrar, para cada ambiente diferente,
um valor de estabilizagio. Especificamente, de 30° a 90° de abertura da borbo-
leta, foram feitos 25 modelos, homogeneamente espagados, e para cada um destes
modelos linearizados foi feito um controlador do tipo LQ (realimentacio de esta-
dos). O objetivo de controle destes controladores é forcar ¢, e ¢. para 1, ou seja,

manter uma relacéo estequiométrica ideal tanto na admissdo quanto no escape.

Tabela 2.1: Notagio utilizada na modelagem do motor

Este trabalho sera construido sobre esses controladores.




Capitulo 3

Sistemas de controle nao-lineares

De um modo geral, a maior parte das técnicas de controle lidam com a solucdo de
problemas lineares. No entanto, o mundo rea] & essencialmente nip linear, e da
mesma forma a maior parte dos problemas de interesse em engenharia. Felizmente,
para um conjunto relativamente grande desses problemas, pode-se trats-los como
se fossem lineares, e com isso obter-se resultados razoaveis,

Mesmo assim, existern limitagdes quanto 2 aplicacio de técnicas de controle
linear & um sisterna nao-linear. Por exemplo, um determinado sistema 56 pode ser
linearizado ao redor de um ponto de equilibrio, €, mesmo assim, o controlador sé
¢ vélido préximo a este ponto. Caso as nio-linearidades da planta sejam “pouco
intensas”, a faixa de comportamento linear ¢ extensa e ag respostas da planta con-
trolada satisfazem as especificaces de performance, No entanto, em muitos Casos
as nac-linearidades sio bastante intensas na faixa de operagio (e.g. sistemas com
folga), ou a faixa de operacao do sistema é muito ampla para que a linearizacio
seja vilida (e.g. sistemas com saturagdo).

Assim, para sistemas onde ¢ necessdrio uma excursio mujto grande nas en-
tradas, ou que estio sujeitos a grandes perturbagdes, ou ainda, onde os parimetros
de performance sio muito restritivos, a aproximacdo do sistema, por um modelo
linear pode mostrar-se absolutamente Incorreta, até levando o sistema & instabili-
dade. Para este tipo de problema, ¢ necessario utilizar alguma, técnica de controle
que leve em conta as nao-linearidades presentes.

De acordo com (Cook 1993) e (Vincent & Grantham 1997), existem técnicas
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que podem ser usadas para reduzir a influencia das nao-linearidades na resposta,
final do sistema, como o uso de um sinal de dither, a utilizacdo de uma n3o-
linearidade no controlador de modo a cancelar 2 nao-linearidade da planta, ou a
anélise utilizando uma funcio descritora de entrada exponencial.

Um problema, com todas essas técnicas é que elas pressupoes um conheci-
mento perfeito do funcionamento do sistema, ou seja, que existe um conjunto de
equacdes diferenciais analiticag que descreve exatamente o funcionamento do sis-
tema, e que essas equacoes sio conhecidas, se nio com exatiddo, pelo menos com
precisao suficiente bara tornar o modelo valido. F mesmo assim, existemn casos
€M que, apesar das equagdes serem conhecidas, elas sdo mujto complicadas para
permitirem a sintese de um controlador satisfatério. Qutras vezes a solucio pode
stmplesmente ser t30 complexa do ponto de vista, numérico a ponto de impedir a
implementacso pratica do controlador, devido a limitages de custo e velocidade

de processamento,

necessario o uso de técnicas que ataquem especificamente estes problemas. Oy
seja, é necessirio técnjcas que levem em consideragio incertezas na defini¢do dos
sistemnas, ou que permitam abordagens “ngo analiticas” a0 problema, ou ainda que
permitam a inclusio de conhecimentos de natureza, pritica ou intuitiva, mas de
qualquer modo imprecisa, sobre o sistema, Abaixo se sumariza algumas técnicas

existentes que abordam pelo menos um dos problemas acima.

¢ Chaveamento entre modelos;

Controle adaptativo;

Légica fuzzy;

Redes neurais artificiajs (RNAs);

Algoritmos genéticos e sistemas classificadores;

Fusdo de duas ou mais das técnicas anteriores.
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Dentre estas técnicas, ser usado neste trabalho a fusio entre uma, técnica de
chaveamento e adaptagfo proposta por Narendra, Balakrishnan & Ciliz (1995),
um método de chaveamento “suave” usando légica fuzzy proposto por Ruspini,
Bonissone & Pedrycz (1998), e umn método de aprendizado utilizando uma rede
fuezzy-newral® descrita em (Branco & Dente 1998).

Estas técnicas serio explicadas brevemente aqui, e serio tratadas majs pro-

fundamente nos capitulos seguintes,

3.1 Miiltiplos modelos e chaveamento

propriedades dinfimicas especificas de cada regido do espago de estados,

De acordo com esta, estratégia, deve-se criar um conjunto controladores {Ci},
cada um deles valido em ma pequena regido do espaco de estados da planta Sk,
de modo que a unizo destes controladores cubra toda a regiao do espago de estados

correspondente a faixa de operagao da planta.
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<)

" Chaveamento de C; para C

GRS

Figura 3.1: Abrangéncia de cada modelo com relacido ao espago de estados da
planta.

plantas com condigées ambientais variando rapidamente, acredita-se que esta idéia
possa ser transportada para o problema do controle do motor a géas natural, ja
que a alteragdo no angulo de abertura da borboleta pode ser considerada uma
alteragio ambiental.

Esta técnica parece atrativa para atacar este problema exatamente porque
deseja-se obter uma resposta a transientes extremamente répida, de modo a min-
imizar a excursdo da relagio estequiométrica dos gases de escape fora da faixa
aceitavel de +1%. Isto porque motores instalados em veiculos de uso predom-
inatemente urbano (o que representa o maior uso dos motores a gas natural) a
condicio de operagao transiente é muito comum.

A arquitetura deste controlador ests representada na figura 3.2. Ela é com-
posta por IV modelos de identificacao, representados por {I,},. A cada instante,
uma medida de performance Ji(t); i = 1,2,...,N dos erros de identificagio
S realizada, e o modelo correspondente min;{J;(¢)} é escolhido para
determinar a entrada de controle naquele instante para a planta.

Os modelos utilizados ndo necessitam obrigatoriamente ser do mesmo tipo.
Pode-se utilizar modelos lineares assim como adaptativos ou nfo-lineares. Tam-
bém é possivel estabelecer alguns modelos que representem o comportamento da.
planta em situagdes de fatha, e desta forma obter um controlador capaz de iden-
tificar falhas e tomar as atitudes mais corretas para a situacio.

No mesmo artigo se propde a seguinte medida de performance dos erros de
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Y, . e
Modelo |, \?:
——> Modelo| At 3
Légica de U Planta Y
chaveamento
Y
Y, Controlador C, £ Y refeineia
U,
i Controladorq <

Figura 3.2: Arquitetura do sistema. de controle com chaveamento

identificacio:
Ji(t) = aed(t) + 8 / “METe(rydr (3.1)
0

Este indice de performance leva em consideragio tanto o erro instantineo
quanto o erro acumulado®. Os parimetros o > 0 e 8 > 0 definem a. importéncia,
relativa destas duas medidas, e o parimetro A > 0 define o tamanho da “meméria”
do termo integral® (quanto maior A, menor a memdria).

Também se recomenda o uso de histerese, para evitar um chaveamento arbi-
trariamente rapido entre as leis de controle. Assim, se o par (1;,C;) esta sendo
usado em um instante ¢, ¢ Ji(t) = min{Ji(t)}, entdo (I;,C;) serd retido se
Ji(t) < Ji(t) + 4, e chaveado para (Ix, Cy) em caso contrario. Nesta regra, § > 0

é a constante de histerese.

?A integral da equacéio 3.1 & a convolugdo das fungdes e=*t e e2(t), ou seja, pode ser entendida
como um filtro passa-baixa com freqiiéncia de corte A aplicado sobre e 2(t).
3i.e. 1/) é a freqiiéncia de corte
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3.2 Légica fuzzy

Em se tratando do projeto de um sistema de controle, a primeira etapa do projeto
normalmente consiste em ganhar um entendimento dos fenémenos que ocorrem na
planta a ser controlada e avaliar pardmetros relevantes quantitativamente. Isto
normalmente é feito durante o processo de “modelagem” do sistema, que tanto
pode ser experimental (utilizando algum método de identificagio) quanto analitico
(usando matemitica e principios fisicos). A maior parte dos sistemas controlados
relaciona dados experimentais 3 sistemas ou modelos. Uma vez obtido o modelo
do sistema, & possivel executar uma série de procedimentos (como anslises mate-
maticas e simulagbes) que levam a um melhor entendimento do sistema e a um
melhoramento do préprio modelo, e assim iterativamente até se obter um modelo
valido.

Ocorrem no entanto situacdes onde a natureza dos fenémenos envolvidos é
muito complexa, e/ou ndo muito bem compreendida, e para as quais modelos
baseados em principios fisicos basicos nao sio adequados, 4s vezes nem mesmo
possiveis. No entanfo, varios destes sistemas séo controlados (inclusive estabiliza-
dos) satisfatoriamente por operadores humanos (Mandani 1994). Na maior parte
dos casos, estes operadores so capazes de transmitir o conhecimento, ou explicar
qual o tipo de raciocinio que os leva a tomar as decisGes de controle. Portanto,
infui-se que, a principio, se for possivel encontrar um modo matematicamente
vilido de expressar este raciocinio, sers possivel programar um controlador para
resolver esta classe de sistemas.

Neste contexto percebe-se umn dos grandes méritos da légica fuzzy. Ela fornece
um ferramental que permite a expressio de enunciados em linguagem comum
de uma forma matematica. Com isto & possivel enfrentar alguns dos problemas
explicitados no parégrafo anterior. Ao se tentar resolver um problema de au-
tomacao muito complicado, o projetista pode se valer de conhecimentos obtides
de operdrios experientes no manuseio daquela planta, ou até mesmo do préprio

conhecimento qualitativo que este possui sobre o problema.
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Em vista desses fatores, a légica fuzzy se mostra uma alternativa bastante
interessante na resolucio de problemas nio-lineares. No entanto, da mesma forma
que qualquer enunciado em qualquer lingua é extremamente vago e dependente do
contexto, existem uma série de pardmetros em um enunciado fuzzy que devem ser
ajustados para que se obtenha um resultado aceitével. Estes parametros dizem

* em cada termo.

respeito sobretudo & quantidade de imprecisao
Por se tratar de um dos temas mais importantes deste trabalho, a formaliza-
cao da légica fuzzy, € modelos de controladores fuzzy, serdo tratados no préximo

capitulo.

3.3 Redes Neurais

Do mesmo modo que a légica fuzzy foi inspirada como um modo de modelar
um raciocinio utilizando conceitos definidos de forma imprecisa, as redes neurais
surgiram como uma tentativa de modelar a capacidade de aprender observada nos
sistemas nervosos dos animais superiores. O primeiro modelo de rede neural que
obteve algum sucesso no ambito da engenharia foi a perceptron, de Rosenblatt,
que modela a retina humana (citado em (Tsoukalas & Uhrig 1996)).

O campo das redes neurais é bastante amplo, existindo uma infinidade de
topologias de redes distintas. As de interesse neste trabalho sio as chamadas “re-
des de memdria associativa”, (associative memory networks ou AMNs), segundo
(Brown & Harris 1994). Estas redes sio redes neurais artificiais feedforward 5, de
aprendizado supervisionado, e sdo aproximadores universais, i.e., podem aproxi-
mar qualquer fun¢do com uma precisio arbitréaria.

A vantagem das AMNs sobre outros tipos de redes neurais sdo a relativa facili-
dade com que se obtém resultados analiticos rigorosos para diversas caracteristicas
destas redes, como convergéncia dos parimetros, poder de representacio, estabil-
idade (no caso de aprendizado on line ). Algumas redes desse tipo também sdo

duais da representacéo de um sistema de inferéncia fuzzy, propriedade que torna

“Este termo serd melhor definido na secéio 4.7
Qu seja, o fluxo do sinal é apenas em uma diregio, sem a presenga de realimentagio dentro
da prépria rede.
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a fusio dos dois conceitos uma idéia muito interessante, ja que permite utilizar
os principios da logica fuzzy para sintetizar uma rede, que serd posteriormente
refinada utilizando algum algoritmo de treinamento. Estd caracteristica sers ex-

plorada durante a sintese do controlador, no capitulo 6.
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Capitulo 4

Légica fuzzy

O conceito bésico por traz da légica fuzzy é a representacdo da vagueza inerente
a qualquer linguagem natural (i.e. linguagens usadas habitualmente por seres
humanos normais, como o portugués ou o mandarim). Esta vagueza aparece so-
bretudo devido a imprecisio na definigio e no uso de simbolos e devido a natureza
tautolégica e intuitiva da linguagem (Hofstadter 1979, Tsoukalas & Uhrig 1996).

O objetivo deste capitulo é fornecer informagao suficiente para que seja possivel
compreender as idéias por tras de um controlador fuzzy. Inicialmente sers dada
uma. idéia intuitiva do significado de conjuntos fuzzy. Depois serfio expostos uma
série de defini¢ces e conceitos relacionados a conjuntos fuzzy. Apés isso, sera
apresentada a idéia de inferéncia fuzzy, o que levara 3 légica fuzzy propriamente

dita. Finalmente, algumas arquiteturas de controladores fuzzy serdo tratadas.

4.1 Introducao

A teoria cldssica de conjuntos é baseada no conceito de que se pode sempre definir
de forma clara se algum determinado objeto ou elemento pertence ou ndo a um
determinado conjunto. Por exemplo, se determinado nimero pertence ao conjunto
dos nlimeros primos ou nio. Esta colocacdo & de uma inegivel utilidade dentro do
campo da matemaética, porém, alguém que tente utilizar esta técnica para modelar
alguns aspectos da realidade cotidiana normalmente esbarra na inexisténcia de

defini¢bes precisas para certos conceitos.
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Um conjunto cléssico & definido sempre sobre um universo de discurso (nor-
malmente representado por X ), ou seja, um determinado grupo de objetos ou
elementos que podem ou nio pertencer ao conjunto. Por exemplo, seja o universo
de discurso o conjunto de pessoas em uma determinada, regido, e seja A o conjunto
dos clientes de uma certa agéncia bancaria. Pode-se representar o conjunto dos

clientes do seguinte modo:

X = {x|pessoas que moram em Sio Paulo}

z = xa(z) = {

1 se z & cliente da agéncia (a.1)

0 se z nao ¢é cliente da agéncia

A fungio x(z) € chamada de funcio de pertinéncia do conjunto A sobre o
universo de discurso X. Esta, abordagem ¢é util para modelar uma série de aspectos
da realidade, e, de uma forma muito mas sofisticada, € a base da teoria de bancos
de dados relacionais (Silberschatz, korth & Sudarshan 1999). No entanto, resiste
a representar alguns conceitos extremamente simples e cotidianos.

Imagine-se uma tentativa de representar o conceito de temperatura ambiente
confortdvel. Nao é possivel tracar uma linha diviséria rigorosa dizendo, por ex-
emplo: se 20 < T < 25, entdo a temperatura é confortavel, caso contrario, a
temperatura serd desconfortével. A artificialidade deste conceito é patente, visto
que, em um grupo de pessoas, muitas diriam que 19°C ainda ¢é bastante razoavel,
outras diriam que 22°C ainda é frio'. Utilizando a notagdo de fun¢ées caracteris-

ticas, e chamando de 7, o conjunto das temperaturas confortaveis, obtém-se:

X ={zeR|-273< ¢}
xr. + X {0;1} (4.2)

(@) 1 20<2<25
r—= xrilz)=
0 qualquer outro valor

!Nota-se que aqui nao se esti fazendo wma medida estatistica, mas sim tenta-se representar
a idéia intuitiva, ou heuristica, que um grupo de pessoas possui de um conceito
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Uma outra representacao mais realista deste conceito pode ser obtida deixando-
se de lado por um momento as limitacbes impostas pela teoria classica de con-
juntos e considerando a plausibilidade, ou a veracidade da classificacio, pode-se

representar a “fungio de pertinéncia” deste modo:

(1 2 <z <24

218 18< <22

Moz 1] 4<z<28

4

xr.(z) = J (4.3)

0 para qualquer outro valor

\
As figuras 4.1 e 4.2 mostram uma representacac grifica das funcdes caracteris-

ticas para as duas equagoes acima.

o6 -

021 -

Figura 4.1: Representacio cl4ssica da fungéo de pertinéncia do conjunto “tempe-
ratura confortivel”

A representagio e os conceitos mostrados ha equacio 4.3 e na figura 4.2 repre-
sentam a intuicéo basica por traz da teoria de conjuntos fuzzy, e portanto por traz
da légica fuzzy. Nas préximas secdes, serd dado um desenvolvimento um pouco

mais formal desta teoria.
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Figura 4.2: Representacio fuzzy da fungio de pertinéncia do conjunto “tempera-
tura confortavel”

4.2 Conjuntos fuzzy

Como mostrado na se¢do anterior, um conjunto fuzzy é uma extensio do conceito
cléssico de conjunto, onde, ao invés da funcio de pertinéncia estar definida apenas
sobre o conjunto {0;1}, ela pode assumir uma gama muito maior de valores, sobre
todo o intervalo [0;1]. A fungéo de pertinéncia de um conjunto fuzzy costuma ser
representado pela letra u, para diferencia-la da funcio para conjuntos cléssicos.
Assim, pode-se dizer que uma fun¢do de pertinéncia /¢4 mapela todo elemento do

universo de discurso X no intervalo [0;1], e é formalmente escrita como
pa(z): X = [0;1] (4.4)

O valor da fungio de pertinéncia, para cada elemento de X pode ser definido
livremente, sendo bastante dependente da aplicagio. Normalmente estes valores
sao atribuidos com base na intuicio, simplicidade de implementaggo, propriedades

fisicas do sistema, dados estatisticos®, ou mesmo uma identificagio baseada em

20 que ndo significa que se est4 realizando uma anélise estatfstica. Apesar de haverem varios
pontos de contato entre as duas teorias (ver cap. 2 de (Tsoukalas & Uhrig 1996)), sao dois
enfoques bastante diferentes.
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redes neurais ou algoritmos genéticos. Mas basta dizer que que os valores das
funcbes de pertinéncia, apesar de sub jetivos, ndo devem ser arbitrarios.

Um outro modo de representar um conjunto fuzzy ¢é definir a colegio de pares
ordenados

A={(z;p4(z))}, zeX (4.5)

onde cada par (z;p4(z)) € chamado de singleton e & composto por z, seguido de
seu valor de pertinénciaem A, 4 (z). Um singleton também pode ser representado
como p4(x) / z.> Define-se o suporte de um conjunto fuzzy A o conjunto dos
singletons com um valor de pertinéncia diferente de zero.

Uma notagdo alternativa, também bastante utilizada, explicitamente repre-
senta um conjunto fuzzy como a unide de de todos os singletons pa(z)/z, ou
seja

A= Z ,uA(m,r)/az,- (4.6)

i€ X
O sinal de somatério em 4.6 indica a unido de todos os singletons. Esta equacio

pressupGe um universo de discurso discreto. Para um universo de discurso con-

tinuo podemos reescrever 4.6 corno

A=/‘;y,4(a;,-)/x,- (4.7)

Onde o simbolo de integral, ao contrario do que € normalmente utilizado em
calculo, representa a unido de todos os singletons. Ela substitui o somatério

apenas para indicar que X é continuo, e nio discreto.

4.3 Operagoes basicas

A maior parte das operacdes em conjuntos fuzzy, como unifo ou interseccio sio
definidas através de t-normas e t-conormas (ou s-normas), nomenclatura foi em-
prestada da teoria de probabilidades. Uma definicio formal destas duas classes de
fungbes pode ser encontrada em (Pedrycz 1993) e (Terano, Asai & Sugeno 1994).
Grosso modo, as t-normas tém as mesmas propriedades da multiplicacio e as s-

normas as mesmas propriedades da adigio. Nas definigdes abaixo, as t-normas

3Note que aqui “/” ndo significa divisdo. E apenas um marcador.
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serdo representadas pelo simbolo A e as s-normas serdo representadas pelo simbolo
V. Como exemplo, pode-se considerar que A é a fungio min e V é a funcio max.

Abaixo estdo uma série de defini¢des fiteis para operagdes com conjuntos fuzzy.

4.3.1 Conjunto vazio

Um conjunto fuzzy A é dito vazio (escrito como A = @) quando sua fungéo de

pertinéncia vale zero em todo o universo de discurso, ou seja
A=  sepa(z)=0, VeeX (4.8)

4.3.2 Conjunto fuzzy normal

Um conjunto fuzzy A é dito nermeal quando existe pelo menos um elemento g no

universo de discurso para o qual a sua funcdo de pertinéncia vale 1, ou seja
Azo € X|pa(zo) =1 (4.9)

4.3.3 Igualdade de conjuntos fuzzy

Dois conjuntos fuzzy sdo ditos igueis se suas fungdes de pertinéncia sdo iguais

para todos os elementos do universo de discurso, ou seja
A=B  sepalz)=pp(z) VzeX (4.10)

4.3.4 Uniao de conjuntos fuzzy

A unido de dois conjuntos fuzzy A e B definidos sobre 0 mesmo universo de

discurso X & um novo conjunto fuzzy AU B também em X, definido como
AU B = pa(z) A pg(z) (4.11)

4.3.5 Interseccao de conjuntos fuzzy

A interseccio de dois conjuntos fuzzy A € B definidos sobre ¢ mesmo universo de

discurso X € um novo conjunto fuzzy AN B em X, definido como

ANB= JMA(.’I:) vV [.LB((E) (4.12)



21

4.3.6 Complemento de um conjunto fuzzy

O complemento de um conjunto fuzzy A é um novo conjunto fuzzy A, com a

seguinte fun¢do de pertinéncia
pa(z) =1 - pu(a) (4.13)
Vale 2 pena lembrar que, diferentemente da teoria classica de conjuntos, em geral

AUA#£X (4.14)

4.3.7 Produto de dois conjuntos fuzzy

O produto de dois conjuntos fuzzy A e B definidos no mesmo universo de discurso

X é um novo conjunto fuzzy A - B, definido por
HaB = pa(e) - pp() (4.15)

Note que, na teoria classica de conjuntos, esta definicio equivale a interseccio

entre dois conjuntos classicos.

4.3.8 Poténcia de um conjunto fuzzy

E possivel elevar um conjunto fuzzy A a poténcia o (um ntmero real positivo)
elevando a sua funcio de pertinéncia & a. Assim, a poténcia de o de um conjunto

fuzzy A é um conjunto fuzzy A* com a funcao de pertinéncia

#aa(X) = [ua()]® (4.16)
4.3.9 alfa-Cortes

A qualquer conjunto fuzzy € possivel associar uma, colecdo de conjuntos classicos
conhecidos como a-cortes de A. Um a-corte € um conjunto consistindo de todos
os elementos de X que pertencem ao conjunto A com um grau de pertinéncia de
pelo menos a. Os a-cortes sio um modo de resolver um conjunto fuzzy em uma
série de conjuntos cléssicos constituintes. Formalmente, 0 a-corte de A & definido

como
Ay = {xeX],uA(:c) > a} (4.17)
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Onde o é um pardmetro que varia de 0 a 1.

4.4 Relagoes fuzzy

Em relagbes fuzzy consideram-se pares de elementos (ou, de um modo mais geral,
n-tuplas) que tém um grau de relacionamento entre si. Do mesmo modo que a
questdo da pertinéncia de um elemento a um conjunto pode ser considerada um
problema de grau, também a associagio de dois conjuntos pode ser considerada,
um problema de grau.

Formalmente, uma relagio fuzzy é um conjunto fuzzy sobre um produto carte-
siano. Ou seja,as relagdes fuzzy nio séo nada mais que conjuntos fuzzy definidos
sobre universos de discurso multi-dimensionais. Supondo a relagéo fuzzy binaria
R definida sobre X x Y, podemos representa-la utilizando a notacio mostrada na

equagao 4.5, assim
R= {((m;y);pﬁ(m,y))} (z:9) € X XY (4.18)

4.5 Numeros fuzzy

Um caso especial interessante de conjuntos fuzzy sdo os chamados nimeros fuzzy.
Estes ntimeros séo uma forma muito sintética e atjl de representar a ambigiiidade
e incerteza encontradas em alguns resultados numeéricos. Intuitivamente, eles sio
um método de representar assercbes do tipo “aproximadamente trés”, ou “quase
cinco”. Além de todas as operacdes com conjuntos fuzzy que foram discutidas
anteriormente, existe um conjunto de operagoes similares as da aritmética comum
que pode ser definido para nimeros fuzzy.

O universo de discurso sobre o qual estdo definidos os ndmeros fuzzy é o
conjunto dos nimeros reais e seus subconjuntos, e suas funcdes de pertinéncia
devem ser normais e converas. A defini¢do de conjunto normal foi dada em 4.3.9.
Intuitivamente, um conjunto & convexo quando sua fungio de pertinéncia no tem
nenhum “buraco”, como representa a figura 4.3. Vale a pena notar que, como é

tipico em légica fuzzy, estas sio as duas dnicas limitagbes quanto a forma da
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fungao de pertinéncia, sendo que qualquer defini¢do mais especifica dependers da

aplicacio.
1.1 T T ¥ T T ¥
1k 4
Néo—convexo
e nermail
0.9 -
o8- -

Convexo e Convexo e
n#o—normal nermal ]

Figura 4.3: Comparagdo entre uma fungio de pertinéncia normal, uma nio—
normal e uma nao—convexa

De um modo formal, um conjunto fuzzy convexo A é definido tal que: (Pedrycz
1993)
VaeonVeer AfAz + (1 — A)y| > min (A(z), Aly)) (4.19)

um dos modos mais tteis de se definir niimeros fuzzy é através da unido de

seus o-cortes

A= V al, = V a[aga);aga)] (4.20)
0<a<t 0<ag1

Para simplificar a notagio, pode-se indicar a equago 4.20 resumidamente por
A = [a{;a{)] (4.21)

sendo feita a ressalva de que esta equacio indica a unido de todos os a-cortes de
0 a 1. Finalmente, é importante notar que uma boa parte das regras validas para

nimeros comuns, como (7 + 3) x 3 = 7, nio vale para nimeros fuzzy.
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4.5.1 Adicao

Define-se a adi¢ao como

A+ B = [a{;al] + [6{; ()] (4.22)
Os intervalos sao calculados da seguinte maneira

A+ B = [a{* +5{; a{ 4 5{] (4.23)
4.5.2 Subtracao
De modo modo andlogo a adigio, define-se a subtragio como

A—B = [af®;a{] - [6; 5] (4.24)
4.5.3 Multiplicacdo

Define-se a multiplicacdo de dois niimeros fuzzy como

A-B = [a{;af] - [ (] (4.25)
Os intervalos sdo calculados da seguinte maneira

A-B = [a{™ - b{*); af . p{] (4.26)

4.5.4 Divisao

Define-se o quociente de dois niimeros fuzzy como
A+ B = [af;a{] + [61;6(] (4.27)
Os intervalos sdo calculados da seguinte maneira

(o) (o)
A B= % .22 (4.28)
bgo:) bga)
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4.6 Inferéncia fuzzy

Pode-se dizer que esta ¢ a operagio principal da légica fuzzy. Na verdade, é apenas
a partir da definigio de regras de inferéncia que se pode falar em ldgica fuzzy. As
primeiras aplicagbes de controladores fuzzy (Mandani 1994}, e uma grande parte
dos controles atuais((Terano et al. 1994), (Reyero & Nicolds 1995)) sio totalmente
baseados em uma série de regras, ou descriges lingiiisticas, escritas em linguagem
natural, com construgdes do tipo “Se/Para”, e se utilizam regras de inferéncia para
obter uma agio de controle a partir desta base de conhecimento.

Em se tratando da légica classica, existem duas operacbes basicas de inferén-
cia, conhecidas como modus ponens e modus tollens (respectivamente, modo que

afirma e modo que nega). O modus ponens é representado da seguinte maneira

P - @
P (4.29)

Q

Ele & composto de duas premissas e um consegiiente. A primeira premissa é a

regra “Se/Para”. A segunda premissa ¢ a veracidade de P. Partindo destas duas
premissas é possivel avaliar a veracidade de Q.

Do mesmo modo, 0 modus tollens costuma ser representado por:

P 5 @
- Q) (4.30)
- P

Aqui, do mesmo modo, temos duas premissas, ou antecedentes, e um conseqiiente.
Aqui raciocina-se que se Q é falsa, entio P é falsa.

Em légica fuzzy, estas duas relagdes sio generalizadas em modus ponens gen-
eralizado (MPG) e em modus tollens generalizado (MTG). No MPG, a primeira
assercdo € definida através de uma relagdo fuzzy, ou seja, a parte “Se/Para” da
inferéncia é representada por uma relagio na forma da equagio 4.18. Entéo, dado

um certo valor fuzzy que se supde semelhante a P, obtém-se umn conseqiiente com
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um determinado grau de relagdo com ). Graficamente:

Se zéP entio yéQ
zé P (4.31)
yéeq

Analiticamente, esta expressao é avaliada como
Q' = P'o R(z,y) (4.32)

Analogamente, para o MTG temos:

Se zéP entaio yéQ
yéq (4.33)

XéeFP

Analiticamente, esta expressao é avaliada como
P'= R(z,y)o Q' (4.34)

Este tipo de célculo (a utilizagao de composicio de relagdes para inferir conseqiién-
cias) é conhecido como regra composicional de inferéncia. Agora que ja foi definido
o modo de operagéo para uma regra, podemos definir algoritmos fuzzy, que séo
uma. colecdo de regras do tipo mostrado em 4.31 conectadas entre si através de
um “Sendo”. Analiticamente, este “sen&o” & interpretado ou como uma t-norma
ou como uma s-norma, dependendo do tipo de relagio que serd usado. Assim, um
algoritmo fuzzy & uma expressao analitica resultante da conexio de uma série de
relacdes fuzzy que, ao receber como antecedente um determinado conjunto fuzzy,
produz como conseqiiente wm conjunto fuzzy, resultado da aplicacio de todas as

regras que formam o algoritmo.

4.7 Quantidade de imprecisao

Em (Pedrycz 1995) se define o conceito da medida de imprecisio (Fuzzyness) de

um conjunto fuzzy. Esta medida visa dar uma idéia de quio amplo, ou pouco
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definido, ¢ determinado conceito representado através de um conjunto fuzzy. Ex-
istem dois tipos de medidas: uma medida de entropia e uma medida de energia.

A definigéo da medida de entropia H(A) de um conjunto fuzzy A é
H(A) = f F(A())dv (4.35)
X

onde v & qualquer medida definida em X e f é qualquer fungdo f:{0;1] — [0; 1],
de modo que seja monotonicamente crescente de 0 até 0,5 e monotonicamente
decrescente de 0,5 até 1.

Evidentemente, est4 defini¢do é extremamente geral. O que se costuma utilizar
é f = logy, o que faz com que H seja equivalente a definicao de entropia na
termodinamica classica.

Uma outra medida possivel é a energia de um conjunto fuzzy, que é definida
como

E(A) = /;( h(A(w))dv (4.36)

onde v é qualquer medida definida em X e A é qualquer fungdo f : [0;1] — [0;1],
de modo que seja monotonicamente crescente de 0 até 1.

Uma escolha comum para h é h(v) = v, e esta medida pode ser interpretada

como a cardinalidade de A.

4.8 Controladores fuzzy

A estrutura basica de um controlador fuzzy estd representada na figura 4.4.
Percebe-se a presenca de trés unidades distintas: a etapa de fuzificagao?, o motor
de inferéncia € a etapa de defuzificacdo. O niicleo dos controladores fuzzy é o
motor de inferéncias. Af estdo todas as regras de inferéncia e é neste local que os
antecedentes sdo propriamente avaliados e os conseqiientes produzidos.

O bloco de fuzificacao é necessario porque os sensores nao costumam apresentar
dados na forma de conjuntos fuzzy, mas sim como nimeros comuns. O algoritmo
de defuzificacdo recebe esses dados e os mapeia em conjuntos fuzzy, que sao entao

passados ao motor de inferéncias.

“Na falta de um termo adequado em portugués, se usara este aportuguesamento
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!

1
) J
Fuzificag&o
Y
Motor de inferéncia
Defuzificagcdo
v

Figura 4.4: Estrutura bésica de um controlador fuzzy

Do mesmo modo, salvo raras excegoes, os atuadores também s6 aceitam sinais
de controle na forma de niimeros comuns. Ento o algoritmo defuzificador recebe
um conjunto fuzzy como conseqiiente do motor de inferéncias e transforma, de
acordo com alguma regra, este conjunto em um nimero normal. A excecao &
necessidade de um fuzificador e defuzificador se d4 quando a comunicacio é feita
diretamente com seres humanos. Para estes casos, é possivel obter entradas ja
fuzificadas, e as saidas, apesar de em alguns casos ainda necessitaremn de um
tratamento, ndo precisam mais ser convertidas em ntimeros comuns.

Existem diversas técnicas tanto de fuzificagdo quanto de defuzificacio, a maior
parte delas ndo relevantes ao problema que se pretende resolver, portanto néo
serdo abordadas aqui. Com relagao & arquitetura do controlador proposto, ela
est4 descrita no capitulo 6.

O tipo de controlador que sera utilizado neste trabalho é uma variagéo de um
controlador conhecido com Takagi ¢ Sugeno. De acordo com (Wang 1994), estes

controladores siao da forma:

Bi: Sewi éXs1e36 Xz ... € 0né Xy (4.37)

entio y = ch + o + ... + vy

onde Xs; sdo conjuntos fuzzy, ¢! sio valores reais, y € a saida da regra [, e
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z,, 530 os valores de entrada. Ou seja, as regras tem um antecedente difuso e um
consequente real, que é uma combinagio linear das entradas. A saida y de um
sistema de Takagi € Sugeno é uma média ponderada das y:
M
L w
i1 WY1 (4.38)
Zf:l wy

Onde o peso w; é o valor de verdade de todo o antecedente, ou seja:

y(z) =

N
wy = [] =) (4.39)

i=1
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Capitulo 5

Redes Neurais

O objetivo deste capftulo é dar uma breve introducéc ao tipo de rede neural
que serd utilizada neste trabalho, € mostrar o método de treinamento, junto com

alguns teoremas sobre convergéncia e estabilidade do aprendizado.

5.1 Membria associativas

Uma rede do tipo memoria associativa baseada em reticulo (AMN!) pode ser
mapeada na estrutura da figura 5.1. A primeira camada desta rede é apenas uma
camada de buffer , mas que pode ser alterada para realizar a normalizagao das
varidveis de entrada. A camada intermediaria é composta de uma série de funcées
ndo lineares, chamadas funges de ativacio, de escopo mais ou menos local, ou
seja, que s6 tem valor maior que zero para uma regido limitada do espago formado
pelas varidveis de entrada. A camada de saida é um combinador linear adaptativo
(ALC?), que é onde se encontra a capacidade de aprendizado desta rede. Mostra-se
que, devido a ativagao apenas Jocal da camada intermediaria, esta rede armazena,
informagies localmente, isto é, pontos préximos no espago de entrada ativam
fungdes que se superpée na camada intermediaria.

A capacidade de modelagem desta rede depende do tamanho, forma e dis-
tribuicio das funcées de ativagio. Esta dependéncia com relacio ao tamanho

ficard muito evidente para o projeto atual. De um modo geral, os requisitos de

! Lattice based Associative Memory Network
2 Adaptive Linear Combiner
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memoéria para as AMNs dependem exponencialmente do tamanho do espaco de
entrada. No entanto, caso as fungbes de ativacio possuam um suporte compacto®,
apenas um pequeno nimero delas estars ativa a cada momento. Neste caso, ape-
sar da necessidade de meméria continuar a mesma, o tempo de execucio (o tempo
para calcular a resposta da rede) ndo aumenta na mesma velocidade (em alguns
tipos de AMNs, o niimero de fungdes ativas em cada momento é um parametro

de projeto).

X;

W,
= W,

Wy

Xx

Figura 5.1: Modelo geral de uma rede neural associativa de multiplas camadas

Uma outra vantagem das AMNs (e existe uma ligagio direta com a légica fuzzy
neste ponto) & que, como pela estrutura da rede se obriga a generalizacio local, o
conhecimento é armazenado de modo transparente (ou menos obscuro) neste tipo
de rede. Caso a rede tenha fungdes de ativagio com um suporte nio compacto, a
alteragdo de um peso altera o valor da saida da rede para todo o espago de entrada.
Isto permite uma maior liberdade de aprendizado, mas também exige algoritmos
mais complexos, e faz com que o conhecimento seja armazenado na rede de um

modo incompreensivel para um ser humano. De modo analogo, a alteragao de um

*De acordo com Brown & Harris {1994), apenas nesse caso pode-se dizer que as redes sio
baseadas em reticulo, mas que, caso as fun¢es tenham valores significativamente maiores que
Zero para apenas uma pequena regiao do espago de entrada (que é o caso da fungéo de ativagao
gaussiana, utilizada neste projeto), valem as mesmas propriedades.
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peso em uma AMNs alfera apenas as saidas relacionadas com pontos préximos
daquele ponto no espago de estados. A extensio da alteracdo na saida depende

do grau de superposicio das fungdes de ativagio.

5.2 Retropropagacao

Como foi dito na segio anterior, a saida das AMNs & um ALC. Este elemento &
funciona como um modelo linear adaptativo aplicado sobre o espaco de entrada
distorcido pelas funcées de ativacéio. Sendo a um vetor com as saidas de todas as
fungbes de ativagdo, e w o vetor com os pesos associados a cada uma das fungdes

de ativagdo, a saida da AMN no tempo ¢ é da forma:
u=a'w (5.1)

Para adaptar o vetor de pesos, é necessiria uma medida de performance do
modelo. Para o caso de aprendizado offfine , est4 sempre disponivel o valor
desejado (@) para a saida da rede. Deste modo, uma medida da performance do

modelo é:

J(e) = %e" (5.2)

onde € é o erro do modelo, e é definido como
e=td—u=d—alw (5.3)

O vetor de pesos deve ser entéo ajustado de modo a melhorar a performance
do modelo. O algoritmo de retropropagacio simples consiste em atualizar os pesos

baseado no valor da variagio do erro com a variacdo do peso, ou seja:

de

onde o € uma constante chamada constante de aprendizado, que est4 relacionada

com a velocidade de aprendizado. Substituindo 5.2 em 5.4, obtemos:

Aw = aea (5.5)
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Sobre essa equagdo, & interessante notar que a dire¢do de busca do peso correto
é sempre paralela a a, e que, reforgando o que foi dito anteriormente com relacio
ao aprendizado local, os pesos 36 serao atualizados para os elementos néo 0 de a.

Apés a correcio do erro, a saida a posteriori u da rede é:

u = aTw

aTw +alaca (5.6)

= afalyi+ (1 - ajal;)

i

onde |jajj? = aTa e o erro de saida @ posteriori € dado por:
€ = t—u
y (5.7)
= (1-callaly)e

Para um valor nio zero de ¢, as seguintes relagbes entre o valor do erro de
safda a priori e a posteriori podem ser estabelecidas para diferentes valores de

o

>l Seag [0;:2]

_ _ 2
le| = | Sea—Ooua—m
le] < e Se a € (0; ﬁg
le] = 0 Se o = TalE

Tabela 5.1: Influéncia do valor de o no aprendizado.

-

Quando a = 1/||a]|3, o erro a posteriori & sempre 0. No entanto, nio é
um valor interessante para ser utilizado a nio ser que, para todos os %, a sejam
ortogonais entre si. Caso esse nfo seja o caso, o aprendizado de um valor implicara
na “esquecimento” de outro.

Caso a variagio na magnitude de a variar muito durante o treinamento, a deve
ser escolhido cuidadosamente, de modo que o treinamento é estdvel mesmo quando
l|lal|? & grande. Isto pode acarretar uma adaptagio lenta em certas 4reas do espago
de entrada. De um modo geral, um grande valor de o no inicio proporciona um
aprendizado inicial rapido, enquanto um valor pequeno produz maior rejei¢do de

ruidos.
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Capitulo 6

Arquitetura do controlador

O objetivo deste projeto &, utilizando técnicas de chaveamento, légica fuzzy e redes
neurais artificiais, e construindo sobre uma, série de controladores LQ e modelos
lineares obtidos em outros projetos, construir um controlador capaz de manter o
valor da relagio estequiométrica normalizada dos gases de escape de um modelo de
motor a gas natural ao redor de um, tentando obter um erro maximo de +£1%. O
desempenho deste novo controlador sera comparado com o de um controlador (Ga
inrplementado) baseado em miltiplos modelos e chaveamento, que sers descrito
com mais detalhes na proxima secio. , e que foi obtido de (Freitas Junior 2003).

A “filosofia” por tras do projeto consiste em utilizar principios de légica fuzzy
para “interpolar” os vérios controladores existentes, Entdo, utilizando-se de analo-
gias entre a estrutura de interpoladores fuzzy e alguns tipos de redes neurais, uti-
lizar um algoritmo de treinamento para ajustar a interpolagio de modo a mostrar
resultados préximos dos exatos para pontos conhecidos. Esta arquitetura ests

detalhada na secio 6.2.

6.1 Controlador LQ existente

Como j4 foi dito no capitulo 2, pode-se considerar a variacio no &ngulo de abertura
da borboleta como uma pertubagdo sobre o motor. No artigo (Narendra et al.
1995), propde-se que uma estratégia de chaveamento entre vérios controladores
lineares e/ou adaptativos pode ser utilizada para reduzir os transientes devido 3

variagoes rapidas das condi¢des ambientais. Baseado nessa, idéia, imaginou-se que
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o uso desta técnica traria bons resultados, pois pode-se considerar o dngulo de
abertura da borboleta como uma variacio ambiental.

A partir daf, dividiu-se o curso de interesse da valvula borboleta (de 35 a 90
graus) em 25 pontos mais ou menos ignalmente espagados (i.e. 35, 38, 40, 43,
45 etc), e para cada uma dessas condicdes encontrou-se um ponto de equilibrio.
Entéo, foi feita a linearizacio em torno de cada um desses pontos de equilibrio, e
para cada um desses modelos lineares foi sintetizado um controlador do tipo LQ*.
Utilizando-se estes controladores, realizou-se um sistema sitnples de chaveamento.
Neste sistema, cada controlador é identificado pelo angulo de abertura da borbo-
leta que foi utilizado na sua sintese?, e seleciona-se qual o controlador utilizado
baseando-se apenas no angulo de abertura da borboleta. Ou seja:

Seja S = {S,} o conjunto dos controladores, onde o = 30, 33,35, 38,40...90

Seja @ o &ngulo de abertura da borboleta medido.

Seja Sa. o controlador utilizado atualmente na planta.

ac € o valor de a que minimiza a relagio |o — &

Deste modo, pode-se dizer que o controlador escolhido é aquele que melhor
aproxima a condicao de operacio naquele momento. Este primeiro controlador é o
proposto no capftulo 5 de (Freitas Junior 2003). No entanto um dos problemas que
se percebeu rapidamente é que as linearizagbes (e portanto os controladores LQ)
baseados nelas) sdo vélidas apenas para uma regiao muito préxima ao ponto onde
o sistema foi linearizado. Deste modo, o controlador apresentou um desempenho
bastante aceitivel para posi¢des préximas de um dos pontos de linearizacio (e.g.:
o controlador de 35 graus funciona muito bem com a borboleta a 35,5 graus),
mas quando enfrentava uma excursio maior (da ordem de 1 grau, por exemplo),

o desempenho j& caia bastante.

1fgtes controladores, além de produzirem os valores de B e vey, também geram o valor de
«. Este valor foi usado durante as simulagGes do controlador fuzzy-neural para se obter uma
avaliagiio aproximada da validade da interpolagéo.

*Estes apelidos serdo sempre utilizados de aqui para adiante. Assim, quando se disser “con-
trolador de 50°”, na verdade se esta falando do controlador LQ projetado sobre a linearizagao do
modelo do motor ao redor de um ponto de equilibrio quando o &ngulo de abertura da borboleta
é de 50 graus,
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A figura 6.1 exemplifica a situacéo. Suponha que os circulos completos repre-
sentem a regido de validade da linearizagdo, e suponha que a linha tracejada in-
dique a fronteira de quando um controlador é chaveado para o seguinte. Percebe-se
que existem varias regibes nio modeladas no espaco, para as quais nenhum dos

controladores existentes ¢ vilido.

Figura 6.1: Representacio das regides de validade dos controladores e da linha de
chaveamento

Este controlador servira de comparacio para o desempenho do nevo contro-
lador a ser projetado. Este controlador & baseado em uma estratégia com maltip-
los modelos e chaveamento “brusco”, ou seja, ocorrem mudancas bruscas na lei de
controle.

A estrutura de controle é semelhante 3 mostrada na figura 3.2, com excecio
que o chaveainento ndo se d4 baseado no erro de predi¢éo, mas sim na posigio da
borboleta. As figuras 6.3 e 6.4 mostram a resposta das saidas para uma excursao
de 50 a 80 graus de abertura da borboleta (figura 6.2).

A variavel que mais interessa & ¢,, pois é um indicativo da faixa de eficiéncia
em que ird trabalhar o catalizador. Levando isto em conta, serdo utilizados dois
parametros para a comparagio: @.max, a maxima excursio fora da faixa de +

1%, e fc ¢e, a integral corrigida do erro, ou seja, a integral da diferenca entre ¢, e
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Figura 6.4: Variacio da relagio estequiométrica normalizada, medida no escape
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1 + 0,005. Este zona morta de + 0,3% aparece devido a curva da figura 1.1, que
mostra que com o motor trabalhando em uma regido préxima de 1, produz menos
poluentes. Assim, apesar da produgdo de NQ, ser grande, existe a vantagem
de um bom funcionamento do catalizador nesta regido. A tabela 6.1 mostra os

valores destes pardmetros para a simulacio da figura 6.4.

Caracteristica Valor
Integral do erro | 0,0220
Maxima excursao | 2,17 %

Tabela 6.1: Valores dos parametros de desempenho para o controlador LQ com
chaveamento brusco

6.2 Sintese do controlador

Na segdo anterior foram mostrados dois problemas com relagio ao controle LQ
com chaveamento brusco. O primeiro é que sempre que ocorre o chaveamento,
ocorre uma mudanga brusca na entrada de controle (isto explica porque o grifico
da figura 6.3 parece t3o “espinhoso”), e isto gera transitérios no motor que tornam
mais lenta a convergéncia deste para o valor de referéncia. O segundo problema,
e bem mais sério, é que uma boa parte do espaco nio possui nenhum controlador
vélido associado. Ou seja, durante a maior parte do regime de trabalho do motor,
este estd recebendo entradas de controle que estio pouco relacionadas com a
dinamica local do motor.

Uma das solugdes possiveis para esse problema é tentar utilizar os controladores
existentes para “interpolar” novos controladores. Utilizando-se o arcabouco de
légica fuzzy mostrado no capitulo 4, podemos imaginar uma base de regras de
controle do tipo:

R;: Se X5 é Xg; entdo 4 & u; (6.1)
Onde X5 é o vetor de varigveis de estado estendido® medido do sistema e @ é a

safda de controle para aquela regra. Xg; e u; sao respectivamente os valores de

30u seja, todas as varidveis de estado, mais a medida do angulo de abertura da borboleta
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“referéncia” e as saidas de controle para a regra i.

Esta idéia se baseia no principio de que quanto mais préximo no espago de
estados se estd de um controlador, maior devers ser o peso deste controlador na
interpolacao.

Cada controlador tém a seguinte forma:
u = ui(X) = [Ki]i + ug; (6.2)

Onde [Kl] é a matriz de realimentacéo de estados para o controlador e ug; é o
vetor de controle para regime permanente?. Como o sistema controlado tem duas
entradas (# e vcy), pode-se considerar o controlador formado por um conjunto
de regras desse tipo na verdade como dois controladores fuzzy do tipo Takagi ¢
Sugeno: um cujo conseqgiiente é B e outro cujo conseqiiente ¢ ve,. No entanto,
como o antecedente para ambos é exatamente igual, se trabalhars sempre com a
forma matricial acima, por ser mais conveniente.

Uma vez definida a forma geral de cada uma das regras da base de regras, falta
definir a forma dos conjuntos de pertinéncia e qual das regras de inferéncia sers
usada. Como se deseja uma interpolacio apenas entre controladores proéximos,
e no entanto se deseja um operador néo-linear e continuo (para evitar ruidos
devidos a descontinuidades), serdo utilizadas funcdes gaussianas para definir os
conjuntos de pertinéncia. Pelas mesmas razdes de suavidade, se usara como regra
de inferéncia o produto algébrico.

Dessa forma, temos definido um interpolador nao-linear entre os controladores
que pode ser definido da seguinte formas:

Seja
43 _(ﬁ:ﬂi)2

e

(6.3)

a funcio de pertinéncia da regra 7, onde j representa cada um dos componentes
do vetor de estados estendido, e o;; define o raio da funcio gaussiana para aquela

varidvel. A figura 6.5 mostra uma forma tipica de y; para um caso com duas

“Ou seja, a entrada de controle necesséria para manter o sistema naquele ponto de equilibrio
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Figura 6.5: Representacio de uma funcdo de pertinéncia gaussiana em um espago
bidimensional
dimensdes. A partir desta defini¢o, o controlador fuzzy fica definido pela seguinte

equacao:

S, uils) ([Ki]i + u()i)

N -
E‘i:l Hi (xs)
O préximo passo é estabelecer um método que permita realizar algum tipo

(6.4)

u=

de treinamento deste controlador. Exatamente como estd, a equacdo 6.4 pode
ser representada por um modelo de rede do tipo feedforward , como mostrado na
figura 6.6. Normalmente sobre esses tipos de rede podem ser aplicados algoritmos
de aprendizado do tipo retropropagagio. Em (Wang 1994) est4 descrito um algo-
ritmo deste tipo para realizar o treinamento inclusive dos valores de o;; e de Xg;.
Com relagio aos valores de xg;, estes ja sao conhecidos com bastante precisdo.
Experimentou-se o algoritmo para tentar ajustar os valores dos o;;, mas ocor-
reram problemas tanto de instabilidade quanto de convergéncia demasiadamente
lenta.

De acordo com Brown & Harris (1994), e como ja foi discutido no capitulo 5, re-

alizar a adaptago para uma rede cuja saida depende linearmente dos parametros
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Figura 6.6: Controlador fuzzy-neural

a serem adaptados, e que armazena o conhecimento de forma local, é relativamente
simples e apresenta boas caracteristicas de convergéncia. Baseado em tudo isso, e
também se inspirando no artigo de (Branco & Dente 1998), considerou-se interes-
sante introduzir uma matriz de pesos, multiplicando o termo com o controlador,

de modo que a equagao 6.4 fica:

S, w0ts) [Wa] ([Ki]x + ot
D oiL, i(Xs)

onde [Wl] ¢ uma matriz quadrada diagonal, do mesmo tamanho de [Ki]. Deste

(6.5)

u=

modo, pode-se aplicar o algoritmo de retropropagacao facilmente a essa rede.

A equagio 6.5 é praticamente a forma final do controlador, faltando apenas
definir os valores para os trés conjuntos de parametros Xsi, Fij, [W.] Durante
este processo se verd que serdo necessérias duas modificagdes: a introdugio de
uma normalizacio para os valores de entrada e uma normalizacio dos valores de

safda, para facilitar respectivamente, a defini¢do de o;; € o treinamento de [W,] 3




42

6.2.1 Definicao dos parametros do controlador

Os parémetros que precisam ser definidos para este controlador sdo, para cada

regra:
* Xsj, o centro da funcdo gaussiana;

¢ g5, um vetor com os raios da funcéo gaussiana para cada uma das dimensdes
1]

do item anterior;
¢ [Wi], a matriz de pesos do controlador.

O primeiro passo & definir o valor de xg;. A tabela 6.2 mostra os valores de
alguns dos pontos fixos para os controladores. Um fato importante que se percebe
desta tabela é que as varidveis x;, 25 e z4 tém o mesmo valor de estabilizagio
para todos os controladores, e logo ndo podem se prestam para diferenciar um
do outro. Portanto, fica claro que néio é necessério utilizar todas as varigveis de

estado estendidas. Pode-se redefinir o vetor xg como:

= B e
Xg = p (66)
[

o

Assim, ficam definidos os xg; para cada regra.

Com relagio a escolha dos oy, existern milhares de métodos que podem ser
utilizados. Wang (1994) sugere como um “chute” inicial que se encontre a ampli-
tude da excursido de cada uma das variaveis de estado {(que chamaremos de z;p,,

€ Ljmin), € que se faca:
Limaz — Tjmin (6 7)

N

Este chute seria entéo refinado através de um aprendizado por retropropagacio.

Tig = 03 =

Como j& foi dito anteriormente, este método apresentou um problema de con-
vergéncia muito lenta, e em alguns casos instabilidade. O método que foi escol-

hido, por sugestdo de Pedro Sérgio®, e que é o mais condizente com a “flosofia”

%Ver a se¢io de agradecimentos
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a [z Lo T3 T4 p n
30° | 0 | 1,6367.10~7 | 0,01 | 0,005 | 36022,0000 | 133,7641
35° | 0 {2,1825.1077 | 0,01 | 0,005 | 43113,0000 | 149,0364
40° | 0 | 2,7842.10~7 | 0,01 | 0,005 | 47634,0000 | 172,0766
45° | 0 |3,4302.10~7 | 0,01 | 0,005 | 53891,0000 | 187,3875
50° | 0 | 4,0755.10~7 | 0,01 | 0,005 | 59150,0352 | 202,8447
55° | 0 | 4,6875.10~7 | 0,01 | 0,005 | 63710,0435 | 216,6058
60° | 0 |5,2513.10~7 | 0,01 | 0,005 | 67710,0553 | 228,3233
65° | 0 | 5,7566.10~7 | 0,01 | 0,005 | 71210,0603 | 237,9922
70° | 0 | 6,2058.10~7 | 0,01 | 0,005 | 74150,0697 | 246,3933
75° | 0 | 6,6017.10~7 | 0,01 | 0,005 | 76600,0926 | 253,7272
80° | 0 | 6,9404.10~7 | 0,01 | 0,005 | 78700,0719 | 259,6262
85° | 0 | 7,4205.10~7 | 0,01 | 0,005 | 79000,1310 | 276,5330
90° | 0 (7,8036.10~7 | 0,01 | 0,005 | 79703,9510 | 288,2412

Tabela 6.2: Valores de estabilizagao

fuzzy, é definir oy; a partir da proximidade dos controladores no espaco de estado.
A figura 6.7 mostra uma série de pontos em um espaco de estados bidimensional.
Para calcular o valor de ¢ para Pi, por exemplo, deve-se procurar o ponto mais
préximo (que no caso é P), e definir ¢ a partir da distancia ds; entre estes pontos
(e.g. 03 = 2d3;). E importante notar que, mesmo que o3 = kds;, &, nio precisa
ser obrigatoriamente oy = kd;3, uma vez que pode haver um ponto mais préximo
de P, que P5. No caso da figura, o ponto mais préximo de P, é Ps.

A dificuldade com esta abordagem é a diferenca de escala entre as varias vari-
aveis de estado. Pela tabela 6.2, percebe-se que existe uma diferenca de 11 ordens
de grandeza entre z; e p. Sempre que existe alguma diferenca de escala, se torna
invalido o uso de qualquer medida de distancia da forma ||x — y|| .

Um modo de resolver este problema é aplicar uma normalizacio as varidveis de
estado, fazendo com que todas variem dentro de uma mesma faixa, por exemplo,
entre 0 e 1. Deste modo faz sentido pensar em termos de distancia no espaco de
estados.

Para realizar a normalizagio, basta determinar os valores minimo e maximo
para cada varidvel de estado e mapear esses valores para 0 e 1. Depois os valores

intermediarios sdo mapeados linearmente entre 0 e 1.
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Figura 6.7: Escolha do controlador mais préximo no espago de estados

Utilizando este método, ao invés de se definir varios oy para cada regra, é
preciso definir apenas um o;. Também, ao invés de se calcular varias gaussianas
para cada regra, ¢ depois multiplica-las entre si, & preciso calcular apenas uma,
e uma norma etclidiana, o que torna o processamento mais rpido, uma vez que
o calculo da fungio gaussiana é relativamente lento®. Deste modo, a equacio 6.3
fica simplesmente:

lbes —=sill ) :

pi(x) = 6“( ” (6.8)

Finalmente, pode-se passar a determinacio dos ¢;. Foi definida uma constante

&, tal que, sendo £ o ponto mais préximo de i,
dix = §i0; (6.9)

Na implementaco atual, 20 invés de se definir um valor diferente de ¢; para
cada regra, decidiu-se fazer & = {. Isto porque ndo existe nenhuma regra ou
heurfstica que auxilie na defini¢io deste valor individualmente para cada regra’.

Os resultados das simulacdes mostraram que o comportamento do controlador

SEstes problemas de velocidade de processamento serdo tratados mais a fundo na segio 6.3
"Uma técnica que merece ser investigada é a utilizaciio de uma otimizagiio por algoritmos
genéticos. Mas isto foge ao escopo deste trabalho
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muda brutalmente com o valor de . Os graficos de 6.8 a 6.11 mostram a variacio

da resposta do controlador para diferentes valores de £.

1.01 ; ; ! ! ! ! .'

1.005

‘pout

Figura 6.8: Simulagéo para uma variagio do sngulo do pedal de 50 a 80 graus,
com § = 4.

Duas caracterfsticas interessantes com relagio ao valor de £ podem ser extrai-
das dos gréficos. A primeira é que, quanto menor o valor de ¢, mais “snave” se
torna o controlador. A segunda é que, em contrapartida, os erros de offset se
tornam maiores (nas figuras 6.8 e 6.9 praticamente nio existe erro de offset ).

Uma terceira caracteristica, que aparece para £ muito grande ou muito pe-
queno esté relacionada com erros numéricos durante o calculo. Caso £ seja muito
pequeno, para a maior parte do espago de estados os graus de pertinéncia de todos
os controladores estardo muito préximos de 0. Devido aos problemas de precisio
finita dos microprocessadores, caso o motor passe por uma, regido desse tipo, nao
seré possivel interpolar um controlador, ou porque todos os graus de pertinéncia
serao identicamente 0, ou porque estardo tio préximos de 0 que estardo proxi-
mos da resolugdo minima do processador®. Neste caso, ou ocorrerd um erro de
divisdo por zero, ou o controlador interpolado ndo sers valido. Do mesmo modo,

se ¢ for muito pequeno, ocorrera um problema semelhante, mas com os valores de

8A resolugio minima de um processador ¢ a menor diferenga possivel entre dois niimeros.
Para os processadores da familia x86 esta resolugéo é da ordem de 1027
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1.01 ! ! ! ; a ; ;
1.005 i
5 :
& :
1 f
0. ; ; ; ; ; i ;
9% 5 10 15 20 25 30 35 40
i

Figura 6.9: Simulacao para uma variacio do &ngulo do pedal de 50 a 80 graus,
com §{ = 2.

1.01 ) ) ! ; ; ! T
1 .005 T T T . ................................... -
; ?
< :
0‘995 1 1 L 1 i i 1
0 5 10 15 20 25 30 35 40
t

Figura 6.10: Simulagio para uma variacio do angulo do pedal de 50 a 80 graus,
com ¢ =0, 5.
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1.01 T T T 4 } : !

1.005F - ............ ............ ............ ............ ............ ......... B

Figura 6.11: Simulacio para uma variacdo do dngulo do pedal de 50 a 89 graus,
com ¢ =0,3.

pertinéncia sendo todos muito préximos de 1.

Apesar dos erros de offset , os controladores com ¢ = 0,5 e £ = 0,3 tiveram
uma resposta melhor (no sentido de se desviarem bem menos do valor objetivo),
e portanto pode-se supor que, apés aplicado o treinamento por retropropagacio,
serd possivel eliminar em grande parte os erros de offset , e se obter um bom
controlador.

Como foi mostrade no capitulo 5, o algoritmo de retropropagacio consiste
em um ajuste de um vetor de pesos w a partir da derivada do erro de saida da
rede. No entanto, a equagio 5.5 ¢ valida apenas para um sistema com uma Gnica
saida. Novamente, uma rede com multiplas saidas pode ser considerada como
miltiplas redes, cada uma com apenas uma saida. A pequena dificuldade com
esta abordagem ¢ ter que definir um valor de o para cada uma das saidas®, pois,
devido a diferenca de valores, cada uma terd um valor diferente, e um limite de
convergéncia diferente'®. Dependendo dos valores escolhidos para a, a velocidade

de convergéncia também pode ser bastante diferente para cada uma das saidas.

S & a constante de aprendizado.
10Conforme estabelecido na tabela 5.1,
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Uma solugao para este problema é novamente fazer a normalizacio das saidas.
Deste modo, as saidas produzidas por cada uma das regras devem estar entre 0 e

1. Isto consiste em encontrar uma matriz [A] e um vetor B de modo que:
[A.] u; + B = up; (6.10)

Onde upn; € o vetor de saidas normalizadas. Um outro modo de obter uy; é

converter a matriz [K.] € o vetor ug de modo a criar um novo controlador
un; = uni(X) = [KNi]i + uNoi (6.11)
onde

[Kni] = [A][Kj]
unoi = [A]ugi+B

Para simplificar a notacdo, nfo sera mais utilizado o subscrito N, ficando im-

(6.12)

plicito que se estd tratando sempre da saida normalizada. Com esta operacao,

chegamos a forma final do controlador, que esta representado no diagrama 6.12.

20— {Noi)

2o NG .
2o oo T ]
% eo oRGE

Figura 6.12: Diagrama do controlador
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Com as saidas normalizadas, pode-se proceder com o treinamento da matriz
[Wi] de cada regra. Aplicando a equagio 5.5 ao controlador, chega-se a seguinte
matriz de atualizacdo de pesos:

[AW;] = C (—a(“%ﬁl)i—y) (6.13)

Onde a funcgdo C(-) é definida como:

a - 0 a;
=C : (6.14)
0 --- ay an
Esta funcdo é necessaria apenas para transformar um vetor em uma matriz diag-
onal (isto & preciso pelo modo como foi definido [W,] ).

A partir dai, o treinamento procede da seguinte maneira:

Dado um conjunto de N pares de entrada e saida {xsi, wi}, para cada par ,
adiciona-se em cada uma das matrizes de peso o valor de [AWi] correspondente
aquela regra. Iterar este processo até que se obtenha um valor razoavel para o
erro!!, ou que um niimero maximo de iteracoes seja alcancado.

Os graficos 6.13 a 6.15 mostram os erros médios de treinamento para os contro-
ladores com € = 0,5 e £ = 0,3. O erro médio de cada iteragdo é a média dos erros
de cada par de treinamento. Desses graficos se percebe dois fatos importantes. O
primeiro é que a taxa de aprendizado {ou a taxa de diminui¢io do erro) é grande
para as primeiras iteragbes, e depois diminui até se tornar bastante pequena. A
partir dai normalmente sdo necessarios muitas iteragdes para obter uma diminui-
¢ao bastante pequena no erro. O segundo fato € que a rede com ¢ = 0,5 aprende
muito mais rapido que a rede com £ = 0,3. Um efeito que também deve ser levado
em consideracgio é a interferéncia de aprendizado. Isto também esta relacionado
com o valor de £, e quanto menor este valor, maior a interferéncia. A interferéncia
aparece como uma diminuicao global do erro médio, mas o aumento do erro de al-
guns pares de aprendizado especificos. Por esta razdo que os resultados mostrados

no capitulo 7 fardo uma comparagdo entre o controlador LG} chaveado, € os trés

110 erro é como o definido na equagio 5.2, e vale ¢ = 0, 5(u — w)?
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controladores mostrados até agora: o com { = 0, 005 e 1000 passos de treinamento
(controlador 1), o com ¢ = 0,003 e 3000 passos de treinamento (controlador 2)
e o com & = (3,003 e 106000 passos de treinamento (controlador 3). Ficara claro
que, em alguns casos, que o controlador 3 tem um maior erro de offset que o

controlador 2, apesar de ter um erro médio menor.

0 I 1 1 1 | ] I | |
0 100 200 300 400 500 600 700 800 900 1000
lteragoes

Figura 6.13: Erro médio de treinamento para a o controlador utilizando ¢ = 0,5
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3
15712 ; 1 .' ! .'
g — ()
— U2}
...................................................................... il =1} S
b — — . i —
0 500 1000 1500 2000 2500 3000

Heragoes

Figura 6.14: Erro médio de treinamento para a o controlador utilizando £ = 0,3

4
12219 : . ; ; : :
: : : : : — uft)
[ — = N — U2
T T —— e S _ .................... AR —u@ | -
Y] ISUSPURRYS AR RO T e ) P
@ QBF T— S o o S T— i
04_ .............. .............. .............. ............. ............ ul
02%_ .............. .............. .............. ............. ............ .
: : Hi e : : —
0 i ) i i 1 I
0 1000 2000 3000 4000 5000 6000 7000
lteragoes

Figura 6.15: Erro médio de treinamento para a o controlador utilizando £=0,3,
continuando a partir do grafico 6.14, totalizando 10000 iteracdes
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6.3 Detalhes de implementacao

Uma das vantagens do controlador LQ com chaveamento brusco é que este é
um controlador extremamente barato em termos computacionais. A tabela faz
uma comparagdo entre o nimero de operagdes necessérias a cada ciclo para o

controlador LQ e para o controlador fuzzy-neural proposto na segio anterior.

Controlador LQ Controlador fuzzy-neural
1 operagao de busca 1 normalizacdo de vetor

1 multiplicagdo de matrizes | N subtracdes de vetor

1 soma de vetores N normas euclidianas

N célculos de gaussianas

N somas de vetor

N somas de escalar

N multiplicacio de matriz

N multiplicagso por matriz ([W])
1 divisdo de vetor por escalar

1 denormalizagao de vetor

Tabela 6.3: Comparagdo entre o nimero de operagoes realizadas para o contro-
lador LQ com chaveamento brusco e para o controlador fuzzy-neural

Percebe-se claramente que o custo de implementacio do controlador neuro-
fuzzy é muito mais alto, apesar das vantagens de eficiéncia que ficardo claras no
capitulo 7. O principal objetivo desta secio é mostrar que existe uma forma de
diminuir significativamente o niimero de calculos necessérios.

A idéia bésica é que, em cada instante, apenas algumas regras estio ativadas, e
todas as outras tém graus de pertinéncia zero ou muito préximos disso. Portanto,
caso seja possivel determinar a priori quais regras estardo ativas e quais estarfo
inativas, é possivel diminuir brutalmente o niimero de operacoes realizadas.

Existem vérios métodos de realizar esta operacio. Um deles é definir um
a-corte nas fungbes gaussianas, de modo que, por exemplo, sempre que a funcio
gaussiana for menor que 0,001 ela valera zero. Pode-se entdo, ainda durante a fase
de projeto, qual o valor de |[xs — xsi||, que produz 0,001 na gaussiana. Ento,

ao invés de se calcular a gaussiana, realiza-se um teste para ver se xg ird ou nio
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ativar essa regra. Um outro método, citado em (Brown & Harris 1994), é utilizar

uma variacdo da gaussiana gue tem um suporte compacto:

(Ara=An1)?
_ T2(A), 5w (m—Ap ¢
m(m) _ ln( 1)6 263010 Se g € ()\h‘l, Ah'g) (6.15)
0 Se x ¢ (/\h‘l,)\h,z)

E claro que quanto menor o valor de £, maior o ntimero de regras que estardo

ativadas em um determinado instante, e portanto menos efetiva esta abordagem.
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Capitulo 7

Resultados

Neste capftulo serao apresentados os resultados de uma série de simulagdes, corn-
parando os desempenhos dos 3 controladores projetados no capitulo anterior com
o controlador LQ com chaveamento brusco. Todas as simulag¢des mostram a re-
sposta do motor a variacoes em degrau no angulo de abertura da borboleta. A
tabela 7.1 mostra os valores iniciais e finais dos angulos de abertura da borbo-
Jeta, assim como os pardmetros de desempenho para cada um dos controladores.
Nesta tabela, os valores dos angulos estdo em graus, o valor de ¢ prax estd em
porcentagem (e.g. uma excursio de 1 até 0,97 estars indicada como 3%) € o valor

de [, ¢. esta multiplicado por 100.

Simulacdo | Control. LQ | Contrel. 1 Control. 2 Control. 3

N° | ag | Coo | Pemtax | Jo @e | Gertax | Jo @e | Gemax | Jo e | demax | Jo b
50 | 80 2,20 3,88 0,36 0 0,37 0 0,37 0

g5 | 40 | 260 |111,0| 831 |1492] 7,36 |1192| 7,54 | 1348
40|85 | 146 [ 193 | 124 | 106 | 1,00 | 1,82 | 0,97 | 2,98
33| 88 | 359 | 580 | 346 | 234 | 268 | 129 | 2,76 | 22,9
88 | 33 33,1 | 2654 19,2 |353,0| 17,3 |317,3 | 17,6 | 3553
50 |88 | 243 | 746 | 080 | 1.8 | 044 | 0 | 043 | 0

s3 |50 | 344 |303| 106 | 138 ] 153 | 180 | 1,5 | 17,6

-1 TR WD =

Tabela 7.1: Tabela com os valores utilizados nas simulagées e com os parametros
de performance obtidos.
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1.025 T T J T ) ; )
1_02_. ........... _.... ............ —'—Contl'0|ad0fi_0 .................. -
: : : : | — Controlador 1 :
1015_ ........... 5 [ ............ —_— COQtrOladorz ........ ........... -
: : : | — Controlador 3 :
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a° :
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t

Figura 7.1: ¢, para a simulagio 1 (de 50 a 80 graus)

—— Controlador LQ
—— GControlador 1
— Controlador 2
—— Gontrolador 3

Figura 7.2: ¢, para a simulacio 1, ampliada para mostrar a resposta dindmica
dos controladores de 1 a 3
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5 Z n a
& 0.9F : : — Controlador LQ [~
; : ~—— Controlador 1
~—— Controlador 2
0.8 =B ................ ........ I Contl'olador 3 ............. -
0.7 ( i [ ; :
0 10 20 30 40 50 60
t

Figura 7.3: ¢. para a simulacio 2 (de 85 a 40 graus). Esta é a tnica simulacéo
em que o controlador LQR apresentou um desempenho superior aos fuzzy-neurais

1.1 ! ! ! ! !
- : : — Controlador LQ
1.08F--- - ’\\\ ...................................... — Controlador1 |~ -
AN - Controlador 2
1 06 e I W o :-_-_._i\ ................................ D GOﬂtrO[adOf 3 .............. -
_eié 104k 0.... . ............... o
T - S | s e = I ............... o
——— |
1_‘%.' e (N R S ............... =
0.98 } ‘
0 10 20 30 40 50 60
t

Figura 7.4: ¢, para a simulagio 2, ampliada para mostrar a resposta dos contro-
ladores de 1 a 3.
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14k A R N SR - Controlador 1 | ... 4
) d : : —— Controlador 2
E : : —— Controlador 3

1_05_ ......

Figura 7.5: ¢, para a simulaggo 3 (de 40 a 85 graus)

1.015 T ! .' ) ! ! ! ; !
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1.01F —— Controlador 2 ........ =
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_9_3 1005 F -1 NN N b ......... -t
1 S PO X = 0 S S ST ....................................... 4

0-995 l I [ L L l L] [ i
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t

Figura 7.6: ¢, para a simulagdo 3, ampliada para mostrar a resposta dinf&mica
dos controladores de 1 a 3
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—— Controlador LQ
—— Controlador 1
— Controlador2 7777 7
—— Controlador 3
............................................ T S
25 30 35 40
Figura 7.7: ¢. para a simulagio 4 (de 33 a 88 graus)
Leg : ' ' : * | — Controlador 1
a b n| = Controlador2 | i
100 —— GControlador 3

102k - \ ..... ............ ............ ............ e CERPERETRR -

Q_:.' .
& 1.0 :
1 .
0.99
0 5 10 15 20 25 30 35 40
t

Figura 7.8: ¢. para a simulagdo 4, ampliada para mostrar a resposta dindmica
dos controladores de 1 a 3. E interessante notar como o erro de offset & significa-
tivamente maior para o controlador 3. Isto se deve ao problema de interferéncia

de aprendizado




59

© Do _Niibowepns . p 0 8. B S T, S it A we R e o -
09 : : ; -— Contrgtador LQ
: : : — Controlador 1 |
0.8_ .............. ................ ................ ........... o Contro|ador2 B ==
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Figura 7.9: ¢, para a simulagao 5 (de 88 a 33 graus)
e : ' ' — Controlador 1
at : 5 —— Controlador 2
......... f e hl..|—— Controlador3 |........

‘bout

Figura 7.10: ¢, para a simulacdo 5, ampliada para mostrar a resposta dinémica
dos controladores de 1 a 3.
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Figura 7.11: ¢, para a simulagio 6 (de 50 a 88 graus)
e N ‘ ? — Controlador LQ
I\ : -— Controlador 1
| \ 5 —— Controlador 2
sioope- . oo L Controlador3_| |
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had Ny : g
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Figura 7.12: ¢, para a simulagio 6, ampliada para mostrar a resposta dindmica
dos controladores de 1 a 3.




61

. ; ; ; !
102 .......... ................ ................ ............... -
1.01 e =T ................ . ................ ............... il
1 ...................................................................... T T e err———r -
& : .
0.99 —— Controlador LQ |7 i
—— Controlador 1
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Figura 7.13: ¢. para a simulagio 7 (de 88 a 50 graus)
1.02 T T T

-— Controlador 1
——— Controlador 2
—— Controlador 3

Figura 7.14: ¢. para a simulagdo 7, ampliada para mostrar a resposta dinamica
dos controladores de 1 a 3.




62

7.1 Anéalise dos resultados

Dos valores da tabela 7.1, percebe-se que, em termos de méxima excursao, os
resultados dos controladores fuzzy-neurais é muito melhor que o do controlador
LQ. Também se percebe que ndo existe uma diferenciagao clara entre o desem-
penho dos controladores fuzzy-neurais. Quando se passa para a andlise de Jo e
percebe-se que os controladores com ¢ = 0,3 sdo superiores que o com § = 0, 5.
Qutro fato interessante que fica claro & que o desempenho desses controladores é
muito melhor quando o angulo de abertura da borboleta esta aumentando do que
quando este estd diminuindo. Para o caso de o diminuindo, em alguns casos o
controlador LQ apresenta um desempenho melhor. Uma outra caracteristica inte-
ressante & notar como as dificuldades de aprendizado interferem no erro de offset
. No grafico 7.8, percebe-se claramente o grande offset do controlador 3. Este
problema, pode ser resolvido com uma mudanca do valor de §;, especificamente
para as regras mais préximas daquele ponto. No entanto, isto pode interferir com

outros aspectos do desempenho do controlador préximo aquela regiao.
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Capitulo 8

Conclusoes

Com os dados do capitulo anterior, podemos resumir os seguintes pontos positivos:

o O desempenho do controlador fuzzy-neural com relagao a maxima excursao

é bastante superior ao do controlador LQ com chaveamento brusco;

e Com relagao a fc &, que funciona como uma medida da quantidade de
poluentes produzidos pelo motor, o desempenho do controlador foi superior

na maior parte dos casos;

Estes pontos mostram que o controlador desenvolvido € uma alternativa van-
tajosa ao controlador LQ chaveado. No entanto, existem alguns pontos negativos

e outros que precisamn de maior estudo. Estes sao:
o O custo computacional é mais elevado;
e A seleciio de parfmetros é muito empirica, e diffcil.

Com relacio ao custo computacional, pode-se dizer que o problema néo é do
controlador fuzzy-neural, que & muito caro, mas sim o controlador LQ que é muito
barato. Qutras estratégias de controle, como o GPC e LMI, que foram utilizadas
por (Freitas Junior 2003) para abordar o mesmo problema também possuem um
custo computacional bastante elevado.

Quanto & dificuldade de se determinar os parametros para o controlador, estas
dificuldades podem ser superadas com o uso de alguma técnica de otimizagao que

lide com problemas nao lineares, como algoritmos genéticos ou buscas randémicas.
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O uso destas técnicas pode inclusive trazer um grande aumento de desempenbo
para o controlador, pois permite fugir da restrigio imposta de que L =£ O
grande problema desta restri¢do & que cla na verdade ignora a abrangéncia de
cada controlador no espago de estados. Considera-se que este € o maior problema
com a implementagdo atual, pois influéncia tanto a resposta dinamica quanto o

offset do controlador.
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